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1. Abstract

A novel computational treatment of dense, stiff, coupled reaction rate equations is introduced
to study the nucleation, growth, and possible coalescence of cavities during neutron irradiation
of metals. Radiation damage is modeled by the creation of Frenkel pair defects and helium im-
purity atoms. A multi-dimensional cluster size distribution function allows independent evolu-
tion of the vacancy and helium content of cavities, distinguishing voids and bubbles. A model
with sessile cavities and no cluster-cluster coalescence can result in a bimodal final cavity size
distribution with coexistence of small, high-pressure bubbles and large, low-pressure voids. A
model that includes unhindered cavity diffusion and coalescence ultimately removes the small
helium bubbles from the system, leaving only large voids. The terminal void density is also re-
duced and the incubation period and terminal swelling rate can be greatly altered by cavity co-
alescence. Temperature-dependent trapping of voids/bubbles by precipitates and alterations
in void surface diffusion from adsorbed impurities and internal gas pressure may give rise to
intermediate swelling behavior through their effects on cavity mobility and coalescence.

2. Introduction

Irradiation of metals has long been known to culminate in macroscopic property changes in-
cluding void swelling [1]. Characteristic stable voids and steady volumetric swelling develop
for a range of temperatures and fluxes, independent of whether radiation bombardment dam-
age occurs as disseminated Frenkel pairs or as small defect clusters. This can occur whether
or not helium is generated along with atomic displacements. In either case, small, unstable
voids, loops, and other defect clusters will develop almost immediately within the irradiated
material. Their subsequent evolution determines the fluence required to create stable voids
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and achieve steady swelling; this so-called incubation dose includes most of the dependence
on radiation environment [2–4]. The processes that govern microstructure evolution include
thermally-activated motion of small defect clusters, mutual impingement, and annihilation or
coalescence reactions along with micro-chemical changes from nuclear transmutation and dis-
placements or diffusion of pre-existing impurities. Radiation simulations should ideally encom-
pass all of these processes. Typically, existing models have included only particular types of de-
fects and reactions or have made other numerical approximations in order to obtain a solution.

At the least, simulations of early irradiation must account for void nucleation and growth pro-
cesses, since annihilation, aggregation, and cluster ripening take place concurrently. Transient
and steady-state swelling behavior due to these processes have been studied recently [5–8].
However, only void reactions with vacancy or interstitial monomers are included in these stud-
ies. This minimal model of void nucleation gives reasonable swelling behavior as a function of
temperature and flux [7,8], viz. an observed steady swelling rate around 1%/dpa in austenitic
stainless steels and an important flux-effect on the measured incubation times [9,10]. While the
results are encouraging, these calculations neglect many of the processes believed to shape the
microstructure. For example, the generation and aggregation of helium impurities is not ex-
plicitly modeled. Size-dependent void diffusion [11,12] is neglected, and thus direct void-void
coalescence is not included. Dislocation loop formation, migration, and coalescence is not ex-
plicitly simulated, either. The model can be considered to combine the production and biased
diffusion of small vacancy and interstitial clusters into effective generation and reaction rates
for monomer species alone, but it is unclear a priori how a coarse-grained treatment of these
processes affects microstructure evolution.

It is now clear that the model must presuppose a ready supply of gas impurity atoms (e.g.,
oxygen and helium [13]) to promote the formation of small voids from the radiation-induced,
supersaturated vacancy population. In practice, reasonable corrections to void energies may
reproduce the approximate void number density observed in irradiated steel [8]. Ultimately,
however, crude models for the apportionment of impurities among the defect clusters should be
supplanted by a detailed accounting of multicomponent aggregation and coalescence reactions
and their influence on the non-equilibrium cluster size distribution. Such problems are widely
addressed in the literature, including gelation, polymerization, and formation of aerosols and
precipitates in solid or fluid media [14–30]. The numerical methods developed for such prob-
lems may also be fruitfully applied to radiation swelling. Here, a hybrid numerical approach
that can encompass the full range of possible cluster compositions and cluster reactions in
mean field is introduced, a Livermore Microstructure Evolution program, LiME. As a first ap-
plication, the method is applied to the nucleation and growth of voids with a two-component
distribution of cluster compositions, examining the evolution of helium-vacancy clusters [13],
while continuing to treat oxygen adsorption by simply reducing the cavity surface energy by
a constant (temperature-independent) factor. The method predicts realistic swelling behavior
for ferritic steel in reactor environments.

As before, the void distribution function is partitioned into overlapping regions [5], treating
small clusters with the Master Equation (ME domain) and large ones with Monte Carlo meth-
ods (MC domain). This allows self-consistent evolution of the full void population with no
truncation of the size domain, no assumptions as to the critical void size or the nature of the
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nucleation process, and no approximations for the overall nucleation rate or duration of the
nucleation stage. Monomer concentrations are included in the ME region, where they may ei-
ther be treated separately by a quasi-stationary approximation or evolved along with the small
clusters through coupled nonlinear reaction rate equations. The formation and evolution of dis-
location loops is not explicitly modeled; network dislocations and loops are already described
by a single, time-dependent density parameter rather than a detailed size distribution function
[31]. However, the methods used for void evolution would be easily generalizable to other defect
species and reactions, provided that suitable mean field rate coefficients are specified for their
reaction rate equations. In particular, future calculations will consider the formation, unfault-
ing, and migration of dislocation loops; loop coalescence and annihilation; and incorporation
of loops in the dislocation network.

The remainder of this paper first describes the coupled, stiff, non-linear evolution equations for
void nucleation, growth, and coalescence. It presents the microscopic rate theory model, gives
an overview of the computational scheme, details the various numerical methods employed in
the calculations, and makes a preliminary application to void nucleation in irradiated stainless
steel. The simulations include vacancy, interstitial, and helium generation, aggregation and,
annihilation, with or without cluster coalescence. The results are sensitive to the effects of
absorbed impurity atoms on cavity surface energy. They also expose a substantial influence of
small, unstable, mobile clusters on the formation of critical-sized voids via direct cluster-cluster
coalescence. Realistic incubation and swelling behavior cannot be obtained over wide ranges
of temperature and flux without including cluster mobility and coalescence.

3. Rate Theory Model

Allowable microstructure reactions (either aggregation or annihilation) are assumed to occur
whenever two defects, m and n, come into contact. Within the mean field continuum approxi-
mation, the collision rate is proportional to their relative diffusivity, Dm,n, and effective colli-
sion cross-section, Am,n. As before [5,8], a bias factor Zm,n includes the effect of long-range in-
teractions [32,33] on the binary reaction rates, K(m,n)ρmρn, where ρ are densities of reactant
species m 6= n and the rate coefficients are:

K(m,n) = Zm,nAm,nDm,n (1)

Note that an additional factor of 1/2 may be required when m = n, to prevent double-counting
of unique pairs of identical reactant particles. This factor is not explicitly shown in the definition
of K.

Microstructure defect species are limited here to self-interstitials and -vacancies, substitu-
tional and interstitial helium, voids/bubbles, and network dislocations. Vacancy and helium
monomers as well as clusters are characterized by their composition, n = (nvac, nhel), in a two
dimensional space. Self-vacancies and interstitials are also specially identified by (1, 0) = v and
(−1, 0) = i, respectively; substitutional and interstitial helium by (1, 1) = vh and (0, 1) = h;
and network dislocations by d. Monomer densities evolve according to:
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dρi

dt
= gi −

∑
m6∈{h,i}

K(m, i)ρmρi −K(d, i)ρdρi

dρh

dt
= gh −

∑
m6∈{h,i}

K(m, h)ρmρh + K(vh, i)ρvhρi

dρv

dt
= gv −

∑
m

K(m, v)ρmρv +
∑
m

(
K(m− v, v)c[m]

v

)
ρm

+ K(v2, i)ρv2ρi −K(d, v)ρdρv + (K(d, v)c[eq]
v )ρd

dρvh

dt
= gvh −

∑
m

K(m, vh)ρmρvh + K(v, h)ρvρh

+ (K(vh, v)c[v2h]
v )ρv2h + K(v2h, i)ρv2hρi (2)

The vacancy-vacancy aggregation term, (Zv,vAv,vDv,v)ρvρv, within the first summation for
dρv/dt in Eq. 2 includes that two vacancies are consumed by the reaction, that there is a factor
of 1/2 to prevent double-counting of unique pairs of vacancies from the population ρv, and that
the relative diffusivity is twice Dv. The net rate is identical to that used in a previous study [5].
Similar considerations also apply to pairs of substitutional helium and to thermal dissociation
of vacancy dimers.

Cluster (n 6∈ {v, vh, h, i}) densities evolve as:

dρn

dt
= gn +

{ ∑
m∈(v,vh,h)

K(m,n−m)ρmρn−m

(
1− δm,n−m

2

)(
1− U(m− n)

)
−

∑
m∈(v,vh,h)

K(m,n)ρmρn

+ K(i,n + v)ρiρn+v −K(i,n)ρiρn U(n− v)

+ (K(n, v)c[n+v]
v )ρn+v − (K(n− v, v)c[n]

v )ρn U(n− v)

}

+

{
−

∑
m6∈(i,v,h,vh)

K(m,n)ρmρn

+
1

2

∑′
K(m,n−m)ρmρn−m

(
1− U(m− n)

)}
(3)

in terms of any direct generation of clusters in the radiation damage cascade, gn; reactions of
existing clusters with monomers (in brackets) that consume or create n-mers including thermal
emission of vacancies, and cluster-cluster reactions (in the second set of brackets) that consume
or create n-mers. Factors of 1/2 in the first and last summations prevent double counting of
indistinguishable reactant pairs, and δm,n = δmv ,nvδmh,nh

where the right hand side consists

of the usual Kronecker deltas, δi,j =

1 i = j

0 i 6= j
. The primed summation is restricted to all

pairs of reactants with m,n−m 6∈ {v, vh, h, i}. Defects n −m (n − v, etc.) are restricted to
the domain of allowed compositions by a step function: U(n) = U(nv)U(nh), where U(n) =1 n ≥ 0

0 n < 0
. Finally, clusters never undergo fission in this model, only the thermal emission of
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single vacancies.

Radiation damage deposition is approximated by the creation of disseminated monomers, so
gn ≡ 0 for n 6∈ {v, vh, h, i}. In this case, gi = φξ, in terms of the atomic displacement rate, φ,
and the damage production efficiency, ξ. The total helium production is gh +gvh, with the ratio
of interstitial to substitutional depending on the model. (Here, it is assumed that the helium is
all deposited as substitutional defects.) Conservation of host atoms (including transmutation
products) requires gv+gvh ≡ gi. Helium impurities are added with a temperature-independent,
gradual activation of α-emitters. This is modeled for a Fe-Ni-Cr steel undergoing neutron bom-
bardment according a two-step activation process, in analogy to the 58Ni(n,γ)59Ni(n,α) reac-
tion. Model transmutation rates are treated as free parameters and are fit to the experimental
helium content in HFIR-irradiated nickel [34,35]. The parameters are γ, α, and δ for the rates
of (respectively) 58Ni(n,γ), 59Ni(n,α), and the sum of all transmutations that consume 59Ni. In
terms of the cumulative radiation dose in dpa, x =

∫
φ(t)dt (for radiation flux, φ):

d

dx

 ρ58

ρ59

=

−γ 0

+γ −δ


 ρ58

ρ59

 (4)

The 59Ni content, ρ59, is obtained from Eq. 4 by transforming to the eigenbasis, where ρA(x) =
ρ58(x) and ρB(x) = ρ59(x) + γ

γ−δ
ρ58(x) are solved, and then transforming back. The helium

generation rate is given by:

dρHe

dx
= αρ59(x) = α

γ

γ − δ
ρ58(0)

[
e−δx − e−γx

]
(5)

assuming that only 59Ni(n,α) produces α-particles. The fit parameters are γ = 0.0255, α =
0.0711, and δ = 0.297 dpa−1. Pristine type 316 stainless steel is approximately 14% nickel, with
68.08% of that 58Ni and with no naturally-occurring 59Ni. Other relevant materials parameters
for type-316 stainless steel are listed in Table 1.

Non-interacting diffusion (independent random walks) implies Dm,n = Dm + Dn. Defect col-
lision cross-sections are simply given by

Am,n = 4π(rm + rn) for m 6∈ {v, vh, h, i} and n 6∈ {v, vh, h, i}
Am,n = rm + b for n ∈ {v, vh, h, i} (6)

in terms of radii for (spherical) defects, rn =
√

(3nvΩ)2

4π
(except for interstitial monomers, where

ri = rh = rv). For consistency with earlier work, cross-sections involving monomers are defined
using the Burgers vector magnitude in place of a monomer radius.

Bias factors between voids and the four defect monomers are calculated from a mean field so-
lution of the diffusion including stress-mediated interactions [33]. The infinite series describing
the image interaction [36] is fit by a simple analytic form, while the modulus interaction [37]
is treated analytically. The numerical results are tabulated for small voids and computed as
needed for larger ones. Long range void-void interactions are presently neglected, so Zm,n = 1
for m,n 6∈ {v, vh, h, i}. In principle, the effect of any long-range interactions or net drift ve-
locities (e.g., from external stress or temperature gradients [38]) can be incorporated in the
void-void reaction rates, so the mean field reaction kernel, K, has general applicability.
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Thermal emission from vacancy clusters is evaluated by a detailed balance argument. Equating
vacancy emission and absorption for the n-mer identifies the chemical potential, µ[n]

v = F [n] −
F [n−v], in terms of the n-mer and (n − v)-mer (i.e., void minus one vacancy) free energies.
Rewriting in terms of void internal energies, E, and the inert gas pressure, P :

c[n]
v = c[eq]

v e(E[n]−E[n−v]−PΩ)/kT (7)

Gas pressure is described with a non-ideal equation of state for helium versus density and
temperature [39]. No volume relaxation is included (i.e., the void volume is nvΩ). In the absence
of surface-adsorbed impurity atoms, E[n] is parametrized in terms of an effective surface energy,
γ[n], and the surface area of a spherical cavity of volume nvΩ

E[n] = γ[n]4πr2
n = Λγ0(T )

(
1− 0.8

nv + 2

)
4πr2

n (8)

In the continuum limit, γ[n] approaches that of a flat, clean surface, γ0(T ), while it approaches
the results of atomic calculations in the limit of small voids [40]. This surface energy is then
further reduced by an constant scale factor, Λ, to reflect the presence of adsorbed oxygen
impurities [41] (see Table 1). Finally, the emission rate is obtained from c[n]

v and the vacancy-
cluster reaction parameters for the (n−v)-mer. For straight, jogged dislocation segments, c[d]

v =
c[eq]
v , the thermal equilibrium concentration. Emission rate coefficients in Eq. 2 are represented

as unary reactions, by including the defect-dependent c[n]
v within the rate coefficient.

At some maximum density, an over-pressurized bubble would begin to emit self-interstitials via
loop punching [39]. Such a possibility is not considered here; instead, an artificial constraint is
imposed on the helium density in a reactant cluster, nh ≤ 2nv. Any reactions that would yield a
higher density are disallowed. Thermal dissociation of substitutional helium into a self-vacancy
plus interstitial helium is similarly assumed to be energetically impossible at temperatures of
interest. Note that self-interstitial and interstitial helium aggregation is excluded since inter-
stitial loops are effectively part of the dislocation density model. Mixed interstitial clusters can
develop in principle [42].

Void diffusivity Dn = Dv/nv
4/3 for n = (nv, nh). This gives both the correct monomer value

and size-dependence for large cluster diffusion [11,12], although the activation energy for void
migration shouldmore properly be that for surface diffusion.This diffusivity takes no account of
the effect of reversible pinning [43], or internal gas pressure on the migration [44], or radiation-
enhanced diffusion [45], or, e.g., that vacancy dimer diffusion may be Dv2 ' Dv. Trapping at
dislocations and grain boundaries are not considered. Such features would be straightforward
to incorporate in the future.

The dislocation model reproduces measured dislocation densities versus dose and temperature
[31]. It includes separate source and annealing terms in terms of the biased flow of radiation-
induced vacancies and interstitials. There is one adjustable parameter, l, representing a char-
acteristic dislocation pinning length [31]. This is taken to be independent of the density of
voids/bubbles in the matrix, because the pinning length in stainless steels is more determined
by carbide nano-precipitates than by the density of voids/bubbles.
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4. Numerical Method

4.1. Overview

Once the temperature- and radiation-environment are specified and initial conditions for the
microstructure are fixed, the Master Equations 2 and 3 completely determine the void/bubble
size distribution function P (t) = {ρn(t)}. Such stiff, non-linear coupled rate equations can be
integrated numerically [17], although this becomes intractable for a large domain of cluster
sizes. The number of distinct species may be reduced by grouping similar clusters together [46],
but the direct approach still becomes intractable for multi-dimensional distributions. Monte
Carlo schemes for discrete coalescence events [15,20] can naturally encompass large voids of
arbitrary composition; however, they are inefficient for simulating nucleation from sub-critical
clusters. Here, the advantages of both methods are combined by partitioning the cluster compo-
sition domain into two overlapping regions. Separate sub-distributions are defined for each, la-
beled ME and MC for treatment by Master Equation and Monte Carlo, with P = PME +PMC .
Each sub-distribution is composed of discrete ensembles of identical clusters, represented by
(n, ρ) for the paired multi-dimensional cluster composition, n, and the ensemble density, ρ.
The distribution PME = {(n, ρ)}ME includes interstitials, i, and vacancy-helium clusters, n,
with 0 ≤ nv ≤ NME

v and 0 ≤ nh ≤ NME
h . There is exactly one element for each ME species,

for a total of NME. Only the densities of the ME elements evolve over time. A sparse, random
set, {(n, ρ)}MC , approximates PMC for all 0 ≤ nv, nh < ∞. The total number of elements,
NMC , is variable, and there may be none, one, or many MC elements for a given n (each with
potentially different values of ρ). Both the densities and the compositions of the MC elements
evolve with time. Such split distribution functions have been used before in a Fokker-Planck
treatment of void growth [5], and in non-equilibrium chemistry [23,29], and plasma physics
applications [47]. In essence, the elements of PMC also constitute so-called ”macroparticles”,
already in wide use for non-equilibrium plasma physics problems [48].

ME-ME reactions (those processes with reactants and product among the elements of PME) are
evaluated in a continuum approximation, using the Master Equation [17]. Discrete MC-MC re-
actions are performed stochastically using aMarkovMonteCarlo procedure [15].ME-MCcross-
reactions are included using either the Markov Monte Carlo method or Poisson-distributed
random walks [20,21] for PMC , and using average sink or source terms in the rate equations
for PME. There are also procedures to transfer clusters between the two sub-distributions and
to regulate the number of elements and their ensemble densities in PMC , in order to control
statistical errors and computational cost. This mixed algorithm is elaborate, so the different
approaches for each of the various components are described in detail in the following sections.

The material microstructure is evolved over time-step, τ , by operator splitting into five stages.
First, ME-MC reactions for rapidly evolving MC clusters (i.e., those with small nv) are included
(Sec. 4.5) with a Markov chain method. Second, the ME-MC reactions for the large, slowly-
evolving clusters are evaluated by Poisson-distributed random walks in composition space for
each possible reaction with ME species (Sec. 4.5). Third, all MC-MC reactions are evaluated
with the Markov Monte Carlo method. (Sec. 4.4) This completes the evolution of PMC over
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τ . The fourth stage integrates the ME including the average source and sink terms from MC
defects and dislocations (Sec 4.2). This completes the evolution for the void/bubble P . At this
point, clusters may be exchanged between PME and PMC , without affecting the instantaneous
total P in any way (Sec. 4.3). This procedure may create new MC elements or eliminate existing
ones, in order to control the growth of NMC versus time. Fifth and finally, dislocation evolution
is performed using a previously-described model [31].

Overall numerical accuracy is monitored through the conservation of host and helium atoms.
Operator splitting of the evolution equations causes first-order time-step errors. However, con-
servation errors are dominated by differences between the ME and MC treatment of reac-
tions in Sec. 4.5 (i.e., continuous reactions versus discrete, stochastic events). These artifact
statistical fluctuations are most important at low temperatures and especially during incuba-
tion, when NMC is smaller, defect annihilation dominates, and little net swelling occurs. They
must be carefully controlled, since the transient period represents a sort of barrier-crossing
problem, with nucleation of stable voids and concomitant, self-consistent changes in the va-
cancy/interstitial populations as the barrier. Any artificial Monte Carlo noise must not spuri-
ously affect the crossing into the steady-state. In other words, NMC-dependent fluctuations in
the net vacancy content must not significantly promote or inhibit void nucleation. In practice,
stable cavities form naturally under the vacancy supersaturation and essentially irreversible
aggregation of helium, and the volumetric swelling behavior is not unduly sensitive to NMC

for the situations considered here.

4.2. ME-ME reactions

Small defect clusters develop at high concentrations under irradiation, and so they dominate
the system of reactions. However, they quickly reach a quasi-stationary distribution wherein
further reactions cause little change in their densities; i.e., the majority of their reactions sub-
sequently cancel one another. It is much more efficient to treat the net reaction rates in a con-
tinuum approximation rather than to explicitly account for individual reactions. The ordinary
differential equation solver, VODE, provides an optimized treatment of stiff, nonlinear reaction
equations [17], given fn = dρn

dt
(Eqs. 2 and 3) and the Jacobian, Jnm = ∂fn

∂ρm
for all species. The

computational cost increases rapidly with the number of coupled equations, hence the cluster
domain is limited to 0 ≤ nvac ≤ NME

vac and 0 ≤ nhel ≤ NME
hel . Typically, NME

vac = 10-100 and
NME

hel = 2-10. Some terms are excluded from the Master Equation so that all reaction products
remain within this finite domain. Clusters with 0 ≤ nvac ≤ NME

vac /2 and 0 ≤ nhel ≤ NME
hel /2

may undergo any mutual reactions, but no other ME clusters may undergo any reactions. These
latter clusters are frozen in size, so their density only increases as reaction products accumu-
late. Frozen clusters eventually transfer to the MC distribution as described in Section 4.3,
after which they will undergo reactions normally.

With reaction constraints and separate ME and MC distributions, the vacancy Eq. 2 becomes:
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dρv

dt
= gv(t) + K(v2, i)ρv2(t)ρi(t)

+
∑

n∈ME

[
−K(n, v)ρn(t)ρv(t) + K(n, 0)ρn(t)

]
U
(1

2
NME − n

)
−
(
Sfast

v + Sslow
v (t0)

)
ρv(t) +

(
Sfast

0 + Sslow
0 (t0)

)
(9)

restricting the sums over n ∈ ME to reactive defects. Eq. 1 also parametrizes unary vacancy
emission reactions as the n-null reaction, K(n, 0) = Zn−v,vAn−v,vDn−v,vc

[n−v]
v . S includes the

external source and sink terms for reactive elements of PME; it accounts for ME reactions
with defects in PMC and with dislocations. Vacancy absorption at MC defects and dislocations
is parametrized by Sv, and vacancy emission by S0. The vacancy sinks and sources include
separate terms that either evolve slowly or rapidly with time. The coefficients are obtained in
Sec. 4.5. The rest of Eq. 2 takes similar form, with sinks Si, Svh, or Sh. (Only vacancies can be
thermally emitted from defect clusters, so S0 is the only source term.)

Operator splitting over the time-step, τ , is such that external source and sink terms S are held
constant as PME evolves. S is divided into terms that evolve slowly or rapidly with time. The
bar indicates an average of the sink strength over the time-step, from t0 to t0 + τ , useful for
rapidly evolving MC clusters, while slowly-evolving dislocations and large MC voids are simply
evaluated at the beginning t0 (see also Sec. 4.5 for further details).

The constrained coalescence Eq. 3 becomes:

dρn

dt
= gn(t) +

{ ∑
m∈{v,vh,h}

K(m,n−m)ρm(t)ρn−m(t)
(
1− δm,n−m

2

)(
1− U

(
m− n

))

× U

(
1

2
NME − (n−m)

)
U

(
1

2
NME −m

)

−
∑

m∈{v,vh,h,i}
K(m,n)ρm(t)ρn(t)U

(
1

2
NME − n

)

+

[
K(i,n + v)ρi(t)ρn+v(t) + K(n + v, 0)ρn+v(t)

]
U

(
1

2
NME − (n + v)

)

−
[
K(i,n)ρi(t)ρn(t) + K(n, 0)ρn(t)

]
U
(
n− v

)
U

(
1

2
NME − n

)

+

{
−

∑
m6∈{v,vh,h,i}

K(m,n)ρm(t)ρn(t) U

(
NME

2
− n

)
U

(
NME

2
−m

)

+
1

2

∑
m6∈{v,vh,h,i}

′
K(n−m,m)ρn−m(t)ρm(t)

(
1− U

(
m− n

))

× U

(
NME

2
− (n−m)

)
U

(
NME

2
−m

)}

−
(
Sfast

n + Sslow
n (t0)

)
ρn(t) (10)
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for clusters m,n ∈ ME, and n 6∈ {v, vh, h, i}. The primed summation excludes n − m ∈
{v, vh, h, i}, since the monomer reactions are evaluated separately. S includes any reactions of
the n-mer with the MC clusters and with dislocations. There are no reactions that consume
frozen clusters, so their concentration increases with time.

A subset of the disallowed reactions would produce clusters that still lie within the ME domain.
These have been excluded, for simplicity and to better resemble an earlier scheme for monomer
aggregation [5]. Specifically, a homogeneous boundary condition is imposed on the Fokker-
Planck equation in Ref. [5], at n = NME

vac . Clusters that grow to the boundary are removed
from the Master Equation treatment and accumulated separately, during which time they are
prevented from changing size. This is equivalent to keeping those NME

vac -sized clusters within
PME but disabling all of their reactions. Frozen clusters are then intermittently transferred to
PMC , where they are no longer constrained [5].

Ideally, the ME domain will encompass all non-zero generation terms, gn, and include as many
sub-critical or transient defect cluster species as possible. A relatively small domain of NME

v '
60, NME

h ' 4 is chosen here, reflecting the computational demands that coalescence imposes.
Similarly to [5], the solution is recorded at exponentially-increasing intervals. This time-step
is irrelevant to the ME evolution itself, which advances by adaptive sub-steps. However, τ
controls errors from operator splitting of the evolution equations, and it governs the creation
of MC elements, as described below.

Because the sink/source terms, S, are evaluated by a discrete MC method, they introduce a fic-
titious noise to the continuum rate equations. This partly manifests as step-function disconti-
nuities in the sink strength over successive time-steps, which in turn causes transient relaxation
in the concentrations of the ME species. The numerical solution tries to accurately follow the
transients, potentially making the fully coupled, non-linear evolution inefficient, when large
time-steps are otherwise possible. Rather than faithfully simulating these spurious transients
at late times, it may be preferable to solve the monomer concentrations (Eqs. 2, 9, etc.) in the
quasi-stationary approximation after any real transient behavior (due to the abrupt onset of
irradiation or other changes in environmental parameters) has concluded. Eq. 10 for dimers
and larger clusters may then be solved while holding the monomer concentrations fixed over
the time-step. In practice, after a brief transient, the results are comparable to those obtained
from the full, coupled, non-linear ME solution.

4.3. Transfer between ME and MC domains

A majority of the ME elements in a small multi-dimensional domain will lie near its boundary,
and so the majority of the ME cluster species will be artificially frozen. The constraints on the
defect clusters are only lifted after they are transferred to PMC . There are three desiderata to
this transfer process. Foremost, it must minimize any systematic, constraint-induced errors,
therefore the density of frozen clusters must be small compared to the rest of P . Secondly, the
MC computational cost must be controlled, therefore NMC must be kept small. Rather than
increasing NMC at every opportunity, frozen clusters at n ∈ ME are allowed to accumulate
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until exceeding a spawning threshold density, ρME
n > ρsp, as in [5]. At the end of that time-step,

a portion of the accumulated density is removed from PME and transferred to a new element
of PMC , incrementing NMC .

(n, ρn)ME → (n, ρn − δρ)ME + (n; δρ)MC (11)

with the ME and MC compositions coinciding. If the accumulated ρME
n > ρsp after each time-

step, then the accumulating clusters are effectively never constrained. Finally, it is imperative
to minimize any NMC-dependent Monte Carlo statistical error. Individual MC elements with
the largest ρ will contribute the most to this error. Therefore, if ρME

n � ρsp at the end of a
time-step, then ∆N > 1 new MC elements are created, as:

(n, ρn)ME → (n, ρn − δρ)ME + ∆N × (n;
δρ

∆N
)MC (12)

Equivalently, MC elements with large ρ may be split into identical macroparticles with smaller
densities. The chosen values for τ , ρsp, and the functional dependence of ∆N on δρ control the
NMC-related statistical error and computational cost for a simulation. Typically, log2(∆N) =
Int(log30(δρ/ρsp)).

For example, the distribution in Fig. 1 shows the production of many MC macroparticles con-
taining 2-4 helium atoms; these react and form a plume that extends to nv ' 100. The ME
domain used in this example also includes frozen cluster species with 5-9 helium; these species
have not yet reached the threshold density. They eventually spawn MC elements, but at a much
slower rate than for the near-critical sizes of 2-4 helium. Even at this early time, the total den-
sity of constrained ME clusters is small compared to the MC population so constraint errors
are minimized.

Since ρsp cannot be made arbitrarily small in practice, it is useful to add a second transfer
mechanism. When a pre-existing MC element at n falls inside the frozen ME domain, the
change:

(n, ρn)ME + (n, ρn)MC → (n, ρn − δρ)ME + (n, ρn + δρ)MC (13)

leaves the total distribution unchanged. NMC remains constant, so the calculation remains
tractable. In practice, the maximum amount δρ ≤ ρn is transferred until the receiving MC
element reaches a cutoff density, ρMC

n + δρ ≤ ρmax (where typically, ρmax ' 2ρsp to 10ρsp.)
The cutoff prevents over-weighting of individual Monte Carlo elements so as to control the
statistical error.

At low temperatures, a very high density of small bubbles can coexist with a moderate density
of large, low-pressure voids. Such distributions are most efficiently treated by making ρmax

size-dependent, so that the maximum macroparticle densities are high in the region of bubbles,
but low in the region of voids. Macroparticles can freely wander between the two regions.
Accordingly, if macroparticle A moves to a region where ρA > ρmax, it may be split into two
identical parts; or if two MC elements at the same coordinate have ρA + ρB < ρmax, they may
be united into one.

In problems of reversible nucleation and growth, small MC clusters may shrink and disappear.
It is computationally inefficient to follow unstable clusters by Monte Carlo methods. Accord-
ingly, macroparticles of the smallest vacancy clusters (with both nvac < Nmin

vac < NME
vac and
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nhel = 0) are deleted at the end of each time-step and their density returned to the correspond-
ing element of PME. (The numerical solution of the ME automatically accommodates any sub-
sequent transients by adjusting its internal time-steps.) The minimum MC size should be large
enough that macroparticles at the threshold only rarely shrink to monomer sizes during the
interval τ . It should also be far enough from NME

vac /2 that the cycle ME→MC→ME (involving
creation of a new macroparticle, shrinkage of the constituent clusters, and transfer of that el-
ement back to PME) is infrequent. In practice, Nmin = NME/4 is used, and these two criteria
are accomodated by taking the largest possible NME. Helium clusters are never returned from
MC to ME distribution; helium emission is not permitted, so the clusters will only grow along
the helium axis.

In the examples considered here, all ME clusters are sub-critical for NME
vac ' 60, so that newly-

created MC particles frequently shrink and are annihilated. This is especially true at low
temperatures, when the proliferation of small voids favors vacancy/interstitial recombination.
Here, this ”rare event problem” for nucleation of stable voids from small vacancy clusters is
at least improved from conventional kinetic Monte Carlo methods, where even the monomers
would be treated stochastically. Ultimately, direct application shows this mixed scheme is suit-
able for radiation damage calculations to high doses.

4.4. MC-MC reactions

Coalescence problems are frequently treated by a Markov Monte Carlo method [15]. A straight-
forward approach defines a finite volume, V , containing N (i.e., NMC) discrete clusters of sizes
{n} that stochastically evolve to a new N − 1 population {n′} through the binary coalescence
of any pair of particles. The average rate of reaction between the ith and jth particles is simply
K(ni,nj)/V

2 per unit volume. The total rate of reaction of all N clusters is RN , where

Ri =
i∑

k=1

Rk,N (14)

and

Ri,j =
j∑

k=1

1

2
K(ni,nk)/V (15)

in terms of the sum over reactions in the entire volume, V , assuming they are uncorrelated and
occur in parallel. Ri,N is proportional to the rate at which cluster i reacts with all other clusters.

A stochastic sequence of discrete reactions may be constructed from these parameters. The
random interval, ξ, to the next reaction is obtained from a uniform variate, x ∈ (0, 1], as [49]:

ξ = −ln(x)/RN (16)

The first cluster of the random reaction pair, i, is selected with a probability proportional to
Ri,N , from y ∈ (0, 1] and

Ri−1

RN

< y ≤ Ri

RN

(17)

where R0 ≡ 0. Finally, the reaction counterpart, j, is identified from z ∈ (0, 1] and
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Ri,j−1

Ri,N

< z ≤ Ri,j

Ri,N

(18)

with Ri,0 ≡ 0. This selects j with a probability proportional to 1
2
K(ni,nj)/V . The procedure

repeatedly selects new x, y, and z for the next event, increments the system time by ξ, performs
the reaction i+ j, and recalculates R for the next iteration. This repeats until the elapsed time
exceeds τ . Since the last reaction falls outside the desired interval, it is discarded without being
performed. The procedure may then be started anew for the next time-step.

The choice of two random numbers to select the pair, i, j, differs from the usual scheme, where
the pair is selected from a single value. In either case, the search for i and j takes o(log2(N))
operations using the method of bisection [50]. However, separate selection of i and j makes it
possible to record all Rm with o(N) storage space and a one-time computational effort of o(N2).
Once i is determined, Ri,m may be tabulated with o(N) effort for all m, so the full matrix need
not be stored. Finally, after i and j react, the Rm may be updated with o(N) effort by replacing
only those terms involving the old clusters i and j with the results for a single new, coalesced
cluster, and re-indexing to account for the lost cluster. Since RN is an extensive quantity for
a given total density, evolution of N particles over a finite interval requires o(N2) effort and
o(N) storage. Specifying the binary reaction rate coefficients, K, as a half-triangular matrix
increases the efficiency marginally.

This MC scheme has difficulty modeling widely varying concentrations of reactants (e.g., the
monomer density is typically orders of magnitude higher than the large clusters for radiation
damage). Also, N decreases after every coalescence, which increases the statistical noise. There
are methods that preserve N [18,26], but it is possible to encompass a wider range of densities at
the same time. In the approach taken here, the discrete MC elements are macroparticles, widely
used in, e.g., non-equilibrium simulations of plasma physics [48]. (This is distinct from related,
”weighted particle” schemes for coagulation [19,22,51].) Here, the j-th macroparticle in the sys-
tem consists of an ensemble of clusters all of the same composition (nj, ρj). Consistent with the
Gillespie procedure, macroparticle reactions are evaluated discretely, so clusters in an ensem-
ble react simultaneously but otherwise stochastically. However, here reactants will generally
have different ensemble densities, ρL < ρH , which are independent of their sizes/compositions,
nL,nH . The lower-density macroparticle, L, reacts completely, leaving behind an unchanged
portion ρH − ρL of clusters from the higher-density ensemble, H. The total cluster density de-
clines, but N stays constant, and N -dependent errors remain steady over time.

Macroparticle reaction rates (analogous to Eq. 15) are defined so as to reproduce the continuum
limit as N →∞. Pairs i and j, with ρi < ρj, react according to:

(ni, ρi) + (nj, ρj) → (ni + nj, ρi) + (nj, ρj − ρi) (19)

at an average rate of K(ni,nj)ρj. Two macroparticles of the same density (ρi = ρj = ρ; i 6= j)
react as:

(ni, ρ) + (nj, ρ) → (ni + nj, ρ/2) + (ni + nj, ρ/2) (20)

at an average rate of K(ni,nj)ρ. The product is simply split into two equal pieces so that N
remains constant. Finally, the individual clusters within a single macroparticle ensemble may
coalesce with one another, so there is also a unary reaction process:

(ni, ρi) → (2ni, ρi/2) (21)
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which also proceeds at an average rate of K(ni,ni)ρi. This possibility modifies Eq. 15 to include
a non-zero reaction rate for i = j.

Macroparticle dynamics never corresponds to an atomistic simulation for finite N . Instead, this
is a distinct, approximative discretization of the continuum equations themselves, in the same
spirit as earlier approaches [5]. Again, P (t) is approximated here by a sparse set of elements
without arbitrarily imposing some coarse-graining of finite difference equations for the distri-
bution. Since the computational cost scales as o(N2) for a dense reaction matrix, the method is
also efficient. This is especially advantageous in higher dimensions, e.g., in describing helium-
vacancy-impurity clusters.

4.5. ME-MC reactions

Additional schemes are required for treating reactions between ME and MC elements. In the
continuum approximation, reaction with external entities, n 6∈ ME, introduces unary sink
terms to the rate equation for m ∈ ME, cf. Eqs. 9, 10:

Sm(t)ρm(t) =

[ ∑
n∈MC

K
(
m,n(t)

)
ρn(t) + K(m, d)ρd(t)

]
ρm(t)U(NME/2−m) (22)

where the summation includes all elements {(n(t), ρn(t)}MC at time t and where K(m, d) in-
cludes reactions with network dislocations. The sink term, S, is identically zero for constrained
ME defects. At present, K(m, d) is only nonzero for m = (1, 0), (−1, 0) and for vacancy emis-
sion K(0, d).

The counterpart to Eq. 22 is expressed for n ∈ MC in the macroparticle scheme by:

(n, ρn)MC → (m + n, ρn)MC (23)

as a discrete reaction with an average rate of K(m,n)ρm. A stochastic sequence of reactions at
these average rates will approach the continuum behavior of Eq. 22 in the limit NMC →∞. A
single reaction can change a macroparticle size, cross-section, and reaction rate substantially,
if m is comparable in size to n. Accordingly, ME-MC reactions for such ”small” MC clusters
are included by the Markov Monte Carlo scheme described above, and the reaction parameters
are immediately updated to reflect the change, before evaluating the next reaction.

Reaction events are randomly performed from the NMC × NME matrix of reaction rates, at
overall rate Q. If the next event occurs within the desired interval, the ith MC element is
selected as a reactant with probability Qi/Q, where:

Qi =
∑
j

K(ni,mj)ρmj
(24)

for reactive elements mj ∈ ME and:

Q =
NMC∑
i=1

Qi (25)

The jth ME element is selected as a reactant with probability K(ni,mj)ρmj
/Qi. Finally, the

time index is updated, the reaction is performed, and Q is revised. This is analogous to the
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Markov procedure for MCMC reactions, except that the reaction matrix is full-rectangular
rather than half-triangular and that the rates are always proportional to the density of the ME
reactant.

As for the corresponding evolution ofPME, the instantaneous source/sink terms, Eq. 22, change
after each discrete reaction event in PMC , possibly multiple times during the interval τ . It
is not computationally practical to evolve PME over each individual Markov sub-step, ξ, to
account for this. Instead, PME is evolved over the full time-step τ by operator splitting, after
all ME-MC and MC-MC reactions in PMC are performed. To minimize any convergence error,
the instantaneous sink strength can be replaced with a weighted time average over the interval:

Sfast
m =

1

τ

∫ t0+τ

t0
dt

[ ∑
n∈MC

K(m,n(t))ρm(t)

]
(26)

=
1

τ

∑
j

ξj

[∑
n

K(m,n(tj−1))ρm(tj−1)

]
(27)

finally expressed as a sum over sub-intervals, ξj, between discrete reaction times, tj.

Such attention to detail is unnecessary for large MC clusters (and for network dislocations),
where rapid reactions with highly mobile defects (i.e., small m) do not substantially change
the sink strength over short intervals. Thus, it is sufficient to update parameters for the large
n clusters at the end of each time-step. In this case, MC clusters are evolved using a Poisson-
distributed random variate, P (x), [20,52] for the number of reactions that occurs during τ .
These MC elements are only updated at t0 + τ , with all reactions accumulated in each of the
NME channels:

(n, ρn) →
(
n +

∑
m∈ME

mP
[
τK(m,n)ρm

]
, ρn

)
(28)

Equation 28 is the discrete analogue of the Gaussian-distributed random walk used previously
[5]. The corresponding ME sink term is:

Sslow
m (t0) =

∑
n∈MC

K
(
m,n(t0)

)
ρn(t0) + K(m, d)ρd(t0) (29)

including the dislocation contribution, assuming that ρd(t) is slowly changing.

Finally, discrete reactions could also be evaluated by a rejection method, given a Majorant
kernel M(m,n) ≥ K(m,n) [51]. For example, the reaction rates, M , can be evaluated on a
coarse grid of ni and all reactants ni ≤ n ≤ ni + 1 be treated alike. In another approach, M
may be chosen to be a sum of products [22],

M(m,n) = ~M(m) · ~M(n) (30)

It is then only required to evaluate NMC vectors,M, (of one or more dimensions) and to take
dot products. Either approach is easier than directly computing NMC(NMC +1)/2 binary rate
coefficients for Eqs. 14, 15. The Majorant kernel is selected to be easy to evaluate and to predict
a faster (or equal) event rate than the true system. To correct for any overestimate, the time
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index is updated according to the usual Markov Monte Carlo procedure, but the reaction is
only performed if a uniform variate, w ∈ (0, 1] also satisfies w ≤ K(m,n)/M(m,n). Thus,
excess events predicted by M are rejected (with the required probability 1−K/M). At present,
the full reaction rate coefficients from Eq. 1 can be evaluated very efficiently, so this method
is not employed here. However, it is expected to be advantageous when biased cavity-cavity,
cavity-loop, and loop-loop reactions are included in the future.

5. Results

5.1. Monomer aggregation model

A high density of trapping/recombination centers is believed to delay the onset of void swelling
[43,53,54]. Traps hinder void diffusion and coalescence and prolong the incubation stage. The
simplest trappingmodel assumes that all dimers and larger clusters are immobile:Dn ≡ 0 for all
n 6∈ {v, vh, h, i}, so that the last two summations in Eq. 3 are zero. If Eq. 2 is solved separately
from the remainder of the Master Equation (Eq. 3) in a quasi-stationary approximation, then
that problem may be solved by existing methods [5,55]. However, here the problem is simply
treated as a limit case of Smoluchowski’s coagulation equation.

Initial cluster populations are shown in Figs. 1-3 for type-316 stainless steel irradiated to low
doses at 10−6 dpa/s and 300, 500, and 700 C. It is well-known that helium-vacancy clusters
may be separated into distinct species (of equilibrium bubbles and stable or unstable voids),
according to their size-dependent free energies. Accordingly, the figures are marked with black
lines where the net average vacancy addition rate for the defect clusters approaches zero. The
leftmost black line in Figs. 1-3 represents a hard wall for over-pressurized bubbles: by fiat,
bubbles cannot reach densities greater than 2 helium per vacant site. Here, this is imposed by
disallowing further reactions with helium- and self-interstitials. Other lines separate clusters
that add or lose vacancies on average. Small, over-pressurized bubbles tend to add vacancies
until reaching the next line in the Figures, where stable helium bubbles are in dynamic equilib-
rium with the vacancy and interstitial population. (This approximates the line of bubbles with
P ' γ/2r, which would be in equilibrium in the absence of a vacancy and interstitial super-
saturation.) The stability of these bubbles is reflected by their elevated concentration in that
region, especially visible in Fig. 3. Stable bubbles tend to grow along the equilibrium line as
they accumulate helium, while adjusting their vacancy content on average to remain in equi-
librium. Finally, bubbles cannot exceed some critical helium content - larger clusters are stable
voids that tend to add vacancies and grow to arbitrary size. This is seen in Fig. 2; there the
clusters grow along the line of stable bubbles until reaching a critical helium content (11 he-
liums), at which point they grow by adding vacancies in excess of helium, forming a plume of
rapidly-growing voids in the size distribution.

Voids are here simply taken to be cavities with higher vacancy/helium ratio than any bubble
species of the same helium content. An approximately parabolic region under the black curves
bounds a set of small, unstable voids that tend to lose vacancies and shrink back towards the
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equilibrium bubble configuration. For example, this ranges from the origin to vacancy/helium
compositions of (19,11) and (94,0) in Fig. 2. The rightmost solid line identifies the critical or
unstable equilibrium void compositions; larger voids tend to add net vacancies with time. Note
that a percentage of equilibrium bubbles in Fig. 2 are able to fluctuate in vacancy content across
the barrier of unstable voids. That is, they become stable voids without having first reached
the critical helium content. Similarly, helium dimers are readily able to cross the barrier of
unstable voids in Fig. 1. Very large voids ultimately become neutral (unbiased) sinks, adding
helium/vacancies at an average rate of 1:200 (based on anticipated asymptotic swelling of
1%/dpa and model helium generation around 50 appm/dpa). Thus, voids approach a line of
constant composition.

Except for a brief transient at the onset of irradiation, the vacancy monomer concentration
decreases monotonically with time as the total sink strength of the microstructure rises with
dose. After a few dpa, production of α-particles also peaks, and the helium monomer concen-
tration also declines. During this extended period, equilibrium bubbles continue to grow by
adding helium, they continue to reach the critical size, and they continue to become voids.
However, the critical size for equilibrium bubbles increases with time (as a function of declining
ρv), and the rate of formation of new helium dimer nuclei and bubble growth rates decrease (as
a function of declining ρh + ρhv). This causes the rate of void formation to decrease gradually
with time, giving a broad void size distribution. Eventually, the larger stable bubbles become
TEM-visible, and the overall size distribution becomes bimodal.

The time-dependent volumetric swelling for this model is shown at a series of temperatures
in Fig. 4. The low temperature system is initially dominated by large numbers of transient,
unstable vacancy clusters (Fig. 1) that serve as recombination centers and suppress swelling. So
many defect centers form that helium/vacancy ratios are kept low, and helium plays a reduced
role in the initial evolution. As a result, the visible cavity density (r > 0.5 nm) is sensitive to
the surface energy parameter, γ: ρvis = 5× 1023 m−3 for γ(T ) = 0.8γ0(T ) and 1× 1024 m−3 for
γ(T ) = 0.5γ0(T ). Eventually, some vacancy clusters acquire significant amounts of helium, and
the system is filled with a high concentration of small equilibrium bubbles. These function as
recombination centers; they keep the vacancy supersaturation low so that few, if any, bubbles
grow into stable voids. They also keep the asymptotic swelling rate small. At and above 500 C,
swelling is more a matter of helium bubble formation and growth towards critical sizes (Figs. 2
and 3). The cavity density and swelling rates are therefore insensitive to γ. The steady swelling
rate of 0.8 %/dpa at 500 C is consistent with void swelling in austenitic stainless steel [7,8].
At higher temperatures, the increased helium mobility results in fewer cavities (7-8×1020 m−3

at 700 C), and a smaller density of bubbles escape to become stable voids and contribute to
steady swelling.

5.2. Cluster coalescence model

The other simplification of defect trapping is to neglect it entirely and assume that clusters
diffuse freely according to their size. The predicted void size distribution changes significantly
when coalescence is included. This is seen in Figs. 5 and 6, for the same temperatures as in
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Figs. 1 and 2. Coalescence reactions continually, preferentially consume the smaller, more mo-
bile clusters. The largest voids grow an order of magnitude larger through coalescence, making
the distribution of stable void sizes substantially broader than before. Very large voids achieve
such low diffusivities as to be effectively immobile; this results again in a terminal void popula-
tion. At low temperatures, the removal of small unstable or equilibrium defect clusters reduces
the number of recombination centers, suppresses damage annihilation, and speeds the forma-
tion of large, stable voids. This enhances low temperature swelling. At high temperatures, this
same coalescence of small clusters greatly reduces the total number of heliumbubbles and voids,
so that the total void sink strength is kept small and the asymptotic swelling rate is diminished
compared to the monomer aggregation model (Fig. 7). Small clusters are absorbed as rapidly
as new ones form, which prevents the formation of a bimodal distribution of small equilibrium
bubbles and large voids. These differences suggest that competition between trapping and coa-
lescence of very small (mostly TEM-invisible) clusters significantly shapes the microstructure
in real irradiated materials.

When coalescence is included, the terminal void density and swelling rate remain sensitive to
γ up to 500 C. The predicted void density at this temperature increases from 7× 1019 m−3 for
γ = 0.75γ0 to 7×1020 m−3 for γ = 0.5γ0. The swelling rate for the former case is only 0.3%/dpa
at 50 dpa but reaches 0.8%/dpa for the latter. This suggests that either the cavity surface
energy is substantially smaller than the value for the clean metal or that the vacancy clusters
have much smaller mobilities than are modeled here. The swelling behavior finally becomes
insensitive to the surface energy by 700C. In this limit, coalescence reduces the terminal void
density to 4-5×1018 m−3.

6. Conclusions

This paper introduces a mixed Master Equation/Monte Carlo treatment of rate theory calcu-
lations in a mean field continuum approximation. This enables flexible treatment of the defect
density variables, using different algorithms to treat the various reactions as efficiently as possi-
ble. The approximately quasi-stationary distribution of small, unstable or transient clusters is
treated (as much as possible) by solving continuum rate equations. This eliminates the need to
evaluate rapid individual reactions that mostly cancel one another. Larger clusters are treated
by Monte Carlo methods, which treats clusters of arbitrary size and composition without the
need for a fixed grid or artificial discretization of the defect distribution. A Markov method
for smaller clusters accurately simulates rapid fluctuations in size and in the reaction parame-
ters, and a Poisson-distributed random walk efficiently treats the more gradual evolution of the
largest clusters. Finally, a macroparticle approach is introduced to encompass large differences
in species densities in the Monte Carlo distribution.

This hybrid scheme readily treats void/bubble evolution to high cumulative fluxes for temper-
atures and dose rates that are characteristic of real reactor systems. Calculations demonstrate
that void coalescence provides an important channel for consolidating vacancy defects into
large, stable voids, controlling the duration of incubation and the terminal void density. It is ex-
pected that thermal and radiation-induced micro-chemical evolution of solute and precipitate
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distributions will influence the cluster mobility and thereby the macroscopic incubation and
steady-swelling behavior. Some degree of void/bubble trapping seems to be required in order to
obtain a bimodal bubble/void size distribution, while some coalescence may be needed to give a
realistically low terminal void density at higher temperature. The cavity surface energy deter-
mines the barrier for nucleation of stable voids and hence also affects the incubation behavior;
this contribution becomes temperature- and time-dependent if oxygen is explicitly modeled.
All of these effects can be addressed, in principle, by extensions of the method described here.

These calculations also suggest the importance of additional, competing processes that are not
evaluated at present, such as interstitial-interstitial aggregation or cluster annihilation from
void-dislocation reaction. The methods described here can be extended to treat coalescence
of loops as easily as voids, given a suitable binary reaction kernel. Such reactions should be
included for reasons of consistency, besides their likely contribution to transient and steady
swelling behavior. They would be especially important if radiation damage were introduced as
a variety of pre-formed defect clusters. Based on the preliminary findings for cavity coalescence,
more general defect cluster reactions are expected to have a significant influence on radiation
swelling behavior.
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Fig. 1. A portion of the void/bubble distribution for a model with mobile monomer defects and sessile clusters, γ = 0.8γ0(T ),

at T=300 C, 10−6 dpa/s, and 32 × 10−3 dpa. The largest void in the distribution contains 110 vacancies. The solid lines

display the loci of stable and unstable equilibrium cluster compositions, based on average vacancy accumulation rates. This
distribution has not been smoothed - the pixellated appearance reflects discrete cluster compositions. (Fig2)
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Fig. 2. A portion of the void/bubble distribution as in Fig. 1, but at T=500 C, 10−6 dpa/s, and 16×10−3 dpa. The distribution
has been smoothed for the large clusters, where Monte Carlo data is increasingly sparse. The solid lines display the stable and

unstable equilibrium cluster compositions.
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Fig. 3. The full void/bubble distribution as in Fig. 2, but at T=700 C. The curved solid line locates the stable equilibrium

bubbles; the critical void size is not visible on this scale.
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Fig. 4. Volumetric swelling curves versus dose in the model that excludes void-void coalescence. The cavity surface energy is

fixed at γ(T ) = 0.4γ0(T )
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Fig. 5. A portion of the void/bubble distribution as in Fig. 1 (300 C), but including void coalescence and with γ(T ) = 0.5γ0(T ).

The distribution has been smoothed for the large clusters, where Monte Carlo data is sparse.
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Fig. 6. The full void/bubble distribution as in Fig. 3 (500 C), but including void-void coalescence and with γ(T ) = 0.5γ0(T ).
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Fig. 7. Volumetric swelling curves versus dose in the model that includes void-void coalescence. The cavity surface energy is

set to γ(T ) = 0.4γ0(T ).
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Table 1
Model material parameters for type-316 stainless steel.

Bulk parameters:

Lattice constant a0 3.639× 10−10 m

Burgers vector b a0/
√

2

Atomic volume Ω a0
3/4

Shear modulus µ 8.295× 1010 Pa

Poisson’s ratio ν 0.264

Cascade efficiency ξFrenkel 0.1

Vacancy parameters:

Relaxation volume -0.2 Ω

Migration energy Em 2.08× 10−19 J

Formation energy Ef 2.88× 10−19 J

Formation entropy Sf 1.5 kB

Pre-exponential factor 1.29× 10−6 m2/s

Shear polarizability −2.4× 10−18

Self-interstitial

parameters:

Relaxation volume 1.50 Ω

Migration energy Em 0.320× 10−19 J

Pre-exponential factor 1.29× 10−6 m2/s

Shear polarizability −2.535× 10−17

Interstitial helium

parameters:

Relaxation volume 0.60 Ω

Migration energy Em 0.320× 10−19 J

Pre-exponential factor 1.29× 10−6 m2/s

Shear polarizability −2.535× 10−17

Substitutional helium
parameters:

Relaxation volume -0.2 Ω

Migration energy Em 2.08× 10−19 J

Pre-exponential factor 1.29× 10−6 m2/s

Shear polarizability −2.4× 10−18

Void parameters:

Relaxation volume 0

Surface energy γ0(T = 0) 2.408 J/m2

Temperature derivative dγ0/dT 0.440× 10−3 J/m2/K

Adsorption factor Λ 0.45-0.80

Migration energy Em 2.08× 10−19 J

Pre-exponential factor 1.29× 10−6 m2/s /n
4/3
v

Environmental

parameters:

Temperature T 300-700 C

Flux φ 10−6 dpa/s

Damage efficiency ξ 0.1
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